MP64-01 PREDICTING RISK OF SIDE-SPECIFIC EXTRAPROSTATIC EXTENSION IN MEN WITH PROSTATE CANCER USING EXPLAINABLE ARTIFICIAL INTELLIGENCE
نویسندگان
چکیده
You have accessJournal of UrologyProstate Cancer: Localized: Surgical Therapy VI (MP64)1 Sep 2021MP64-01 PREDICTING RISK OF SIDE-SPECIFIC EXTRAPROSTATIC EXTENSION IN MEN WITH PROSTATE CANCER USING EXPLAINABLE ARTIFICIAL INTELLIGENCE Jethro Kwong, Adree Khondker, Christopher Tran, Emily Evans, Amna Ali, Munir Jamal, Thomas Short, Frank Papanikolaou, John Srigley, and Andrew Feifer KwongJethro Kwong More articles by this author , KhondkerAdree Khondker TranChristopher Tran EvansEmily Evans AliAmna Ali JamalMunir Jamal ShortThomas Short PapanikolaouFrank Papanikolaou SrigleyJohn Srigley FeiferAndrew View All Author Informationhttps://doi.org/10.1097/JU.0000000000002104.01AboutPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract INTRODUCTION AND OBJECTIVE: Current machine learning (ML) models are limited poor interpretability, precluding their routine use in planning nerve-sparing at radical prostatectomy (RP). We aimed leverage explainable artificial intelligence techniques provide accurate, interpretable, personalized predictions for side-specific extraprostatic extension (ssEPE). METHODS: A retrospective sample 900 prostatic lobes (450 patients) from RP specimens our institution between 2010 2020, was used as the training cohort. Features (ie: variables) included patient demographics, clinical, sonographic, site-specific data transrectal ultrasound-guided prostate biopsy. The label outcome) interest presence ssEPE specimen. ten-fold stratified cross-validation method performed train a gradient-boosted model, optimize hyperparameters, internal validation. Our model further externally validated using testing cohort 122 (61 separate 2016 2020. An existing literature which has highest performance predicting selected baseline comparison. Discriminative capability quantified area under receiver-operating-characteristic (AUROC) precision-recall curve (AUPRC). Clinical utility determined decision analysis. Shapley Additive exPlanations were interpret ML model’s predictions. RESULTS: incidence cohorts 30.7 41.8%, respectively. outperformed with mean AUROC 0.81 vs 0.75 (p<0.01) AUPRC 0.69 0.60, respectively, on Similarly, favourably an 0.76 (p=0.03) 0.78 0.72. On analysis, achieved higher net benefit threshold probabilities 0.15 0.65. web application incorporating developed de-identified can be inputted generate individualized map annotated explanations highlight features had greatest impact (www.ssepe.ml). CONCLUSIONS: user-friendly that enables physicians without prior experience assess risk understand factors driving these aid surgical counselling. Source Funding: None © 2021 American Urological Association Education Research, Inc.FiguresReferencesRelatedDetails Volume 206Issue Supplement 3September 2021Page: e1110-e1110 Advertisement Copyright & Permissions© Inc.MetricsAuthor Information Expand Loading ...
منابع مشابه
Building Explainable Artificial Intelligence Systems
As artificial intelligence (AI) systems and behavior models in military simulations become increasingly complex, it has been difficult for users to understand the activities of computer-controlled entities. Prototype explanation systems have been added to simulators, but designers have not heeded the lessons learned from work in explaining expert system behavior. These new explanation systems a...
متن کاملIatrogenic Extraprostatic Extension of Prostate Cancer From a Needle Biopsy
Seeding of prostate cancer along a needle biopsy track is a rare complication. The diagnosis of this presents a significant upstaging of the disease and profound potential changes to the treatment strategy. In this report, we present a 71 year-old male with otherwise low-risk prostate cancer on final pathology except for extraprostatic extension (EPE) along a probable needle track. We further r...
متن کاملthe study of aaag repeat polymorphism in promoter of errg gene and its association with the risk of breast cancer in isfahan region
چکیده: سرطان پستان دومین عامل مرگ مرتبط با سرطان در خانم ها است. از آنجا که سرطان پستان یک تومور وابسته به هورمون است، می تواند توسط وضعیت هورمون های استروئیدی شامل استروژن و پروژسترون تنظیم شود. استروژن نقش مهمی در توسعه و پیشرفت سرطان پستان ایفا می کند و تاثیر خود را روی بیان ژن های هدف از طریق گیرنده های استروژن اعمال می کند. اما گروه دیگری از گیرنده های هسته ای به نام گیرنده های مرتبط به ا...
15 صفحه اولExplainable Artificial Intelligence for Training and Tutoring
This paper describes an Explainable Artificial Intelligence (XAI) tool that allows entities to answer questions about their activities within a tactical simulation. We show how XAI can be used to provide more meaningful after-action reviews and discuss ongoing work to integrate an intelligent tutor into the XAI framework.
متن کاملAge Specific Reference Levels of Serum Prostate-Specific Antigen, Prostate Volume and Prostate Specific Antigen Density in Healthy Iranian Men
Background: It is relevant to highlight that there is not a precise and perfect report on either 95 percentile value (upper limit of normal range) or on appropriate reference intervals for serum PSA in Iranian population. Objective: To determine age-specific reference ranges for serum prostate-specific antigen (PSA) concentration and PSA density (PSAD) and prostate volumes in a population of he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Urology
سال: 2021
ISSN: ['0022-5347', '1527-3792']
DOI: https://doi.org/10.1097/ju.0000000000002104.01